Laboratory, who made their automated diffractometer available for the collection of the data reported here. We are also indebted to R.A. Potter of the Metals and Ceramics Division, who participated in the preparation of the crystals.

References

Bartram, S. F. (1961). General Electric Co., Aircraft Nuclear Propulsion Department, DC 61-7-10.
Bond, W. L. (1959). In International Tables for X-ray Crystallography. Vol. II. Birmingham: Kynoch Press.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). A Fortran Crystallographic Least-Squares Program, ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). A Fortran Crystallographic Function and Error Program. ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Ellison, R. D. \& Levy, H. A. (1964). Computer-Controlled X-ray Diffractometer. Chemistry Division Ann. Progr. Rept. ORNL-3679 (June 20), p. 100. Oak Ridge National Laboratory, Tennessee.

Busing, W. R., Ellison, R. D. \& Levy, H. A. (1965). Computer-Controlled X-Ray Diffractometer, Chemistry Division Ann. Progr. Rept. ORNL-3832 (May 20), p. 128. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. \& Waber, J. T. (1964). Los Alamos Scientific Laboratory, New Mexico, LA-3056.

Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Harris, L. A., Potter, R. A. \& Yakel, H. L. (1962). Acta Cryst. 15, 615.
Harris, L. A. \& Yakel, H. L. (1966). Acta Cryst. 20, 295.
International Tables for X-ray Crystallography (1962), Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP, A Fortran ThermalEllipsoid Plot Program for Crystal-Structure Illustrations. ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Paton, M. G. \& Maslen, E. N. (1965). Acta Cryst. 19, 307. Potter, R. A. (1960). Metallurgy Division Ann. Progr. Rept., ORNL-2988, pp. 188-190. Oak Ridge National Laboratory, Tennessee.
Smith, D. K., Cline, C. F. \& Frechette, V. D. (1962). J. Nucl. Materials, 6, 265.

Smith, D. K., Cline, C. F. \& Austerman, S. B. (1964). Acta Cryst. 18, 393.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. ORNL-TM-229. Oak Ridge National Laboratory, Tennessee.
Weir, C. E. \& Van Valkenburg, A. (1960). J. Res. Nat. Bur. Stands 64A, no. 1, 105.
Wells, A. F. (1951). Acta Cryst. 4, 200.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Yakel, H. L. (1964). ORSTAT, A Fortran Program for the Statistical Analysis of Diffraction Data, ORNL-TM-750. Oak Ridge National Laboratory, Tennessee.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

The Crystal Structure of $\mathbf{C e}_{5} \mathbf{M g}_{42}$

By Quintin Johnson and Gordon S. Smith
Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 19 June 1966)
The structure of the compound present in the $\mathrm{Ce}-\mathrm{Mg}$ system at the approximate stoichiometry of CeMg_{8} has been determined with the use of diffractometrically recorded single-crystal intensities. The unit cell, containing two formula units of $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$, is body-centered tetragonal with $a=14 \cdot 78$, $c=10.43 \AA$. The calculated density is $2.51 \mathrm{~g} . \mathrm{cm}^{-3}$, and the space group, as confirmed by the final structure, is $I 4 / \mathrm{m}$.

Introduction

During a phase-relation study of the magnesium-rich region of the $\mathrm{Ce}-\mathrm{Mg}$ system (Wood \& Cramer, 1965), a new compound with a tentative composition $\mathrm{CeMg}_{8 \cdot 25}$ was discovered. The composition and symmetry indicated this to be a new structure type; therefore, we have carried out a determination of this structure by conventional single-crystal X-ray diffraction techniques. Additional interest in this study resulted from the expectation that, in view of the similarity of cell constants, a simple relationship would be found to connect this structure with the other structures oc-
curring in the magnesium-rich region (Savitskii, Terekhova, Burov, Markova \& Naumkin, 1962; Evdokimenko \& Kripyakevich, 1963; Johnson, Smith, Wood \& Cramer, 1964; Johnson \& Smith, 1966).

Experimental

The sample of $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$ used in this investigation was kindly provided by D. Wood. Details concerning the preparation are given by Wood \& Cramer (1965).

Single-crystal oscillation, Weissenberg, and precession photographs showed tetragonal symmetry. The observed extinctions $(h+k+l \neq 2 n)$ and $4 / m$ Laue
symmetry are characteristic of space groups $I 4, I \overline{4}$ and $I 4 / m$. The final structure confirms the centrosymmetric ($I 4 / m$) space group. Lattice constants were obtained by a least-squares fit of powder data from a $\mathrm{Cr} K \alpha(\lambda=2.2909 \AA)$ powder pattern. The computer program was a modification of the Heaton, Gvildys \& Mueller (1964) program. Cell constants are $a=$ 14.78 ± 0.01 and $c=10.43 \pm 0.01 \AA$.

Intensities were recorded diffractometrically with zirconium-filtered Mo $K \alpha$ radiation $(\lambda=0.7107 \AA)$. 607 independent reflections up to $2 \theta \leq 40^{\circ}$ were measured. A φ-dependent absorption correction was applied to the intensities; the maximum correction required was only 10%.

Determination of the structure

The approximate number of atoms present in the tetragonal cell could be estimated by a comparison with the corresponding data for $\mathrm{Ce}_{2} \mathrm{Mg}_{17}$ (Johnson \& Smith, 1966). Taken in conjunction with the approximate stoichiometry observed in the metallographic study (Wood \& Cramer, 1965), this strongly indicated that there were ten cerium atoms in the unit cell. For the centric space group $(I 4 / m)$, there were several combinations of special positions which would accommodate ten atoms but only the combination of $2(a)$ and $8(h)$ (International Tables for X-ray Crystallography, 1952) was consistent with the observed reflections and volume requirements; thus it was necessary to place five cerium atoms in the plane $z=0$ and the other five at $z=\frac{1}{2}$. Approximate values for the two parameters of the eightfold positions ($x=\frac{2}{5}, y=\frac{1}{5}$) were obtained from packing considerations. A Patterson synthesis confirmed this model and yielded more accurate values for these parameters.

A 'heavy-atom' electron density synthesis calculated on the basis of a refined model sufficed to locate (after one or two false starts) all magnesium positions.

A difference map based on refined positional parameters and isotropic thermal parameters for all atoms gave evidence of anisotropic behavior for the cerium atoms. A subsequent refinement, with anisotropic thermal parameters for cerium only, resulted in a decrease in ${ }_{\Delta}^{\nabla}$ the conventional R index from 5.8% to

Fig.1. (a) $\mathrm{Ce}(1)$ coordination polyhedron. (b) $\mathrm{Ce}(2)$ coordination polyhedron.
$5 \cdot 1 \%$ (all reflections). Additionally, a difference map calculated on this basis showed the electron density to be more uniform and close to zero about the cerium positions. Comparable treatment in the case of magnesium atoms resulted in no significant change; thus the parameters reported are the result of the abovementioned refinement in which only the cerium atoms were refined anisotropically.

The final atom parameters obtained by the fullmatrix least-squares program of Gantzel, Sparks \& Trueblood (ACA Program No. 317, unpublished) are given in Table 1. Atomic scattering factors were those for the neutral atoms as listed in International Tables for X-Ray Crystallography (1962) and a weighting scheme appropriate for diffractometric data (Smith \& Alexander, 1963) ($w=F_{o}^{1 / 4}, F_{o}<A ; w=A^{5 / 4} F_{o}^{-1}, F_{o}>A$ with $A=32$) was used. Changes in parameters for the last cycle were less than 0.01 times the estimated standard deviations. Table 2 is the list of observed and calculated structure factors.

Discussion

As stated in the introduction, a relationship was expected to be uncovered between this structure and the other magnesium-rich phases, $\mathrm{Ce}_{2} \mathrm{Mg}_{17}, \mathrm{CeMg}_{12}(\mathrm{I})$, and CeMg_{12} (II), which would account for the similarity in cell constants. A summary of all compounds known to date for the $\mathrm{Ce}-\mathrm{Mg}$ binary system is given in Table 3. The hexagonal TiBe_{12} structure reported by Miller (1960) for CeMg_{12} and the cubic symmetry reported for a compound of approximate composition CeMg_{9} by Beletskii \& Galperin (1961) are not confirmed. Instead, their results are understood on the basis of the unit cells of the structures which we report.

The similarity of cell constants is noted in Table 3 by expressing these as a function of s, where s is approximately equal to $10 \cdot 3 \AA$. The reason for this similarity in the case of the $\mathrm{Ce}_{2} \mathrm{Mg}_{17}$ and the CeMg_{12} (I and II) structures is understood following the arguments of Florio, Baenziger \& Rundle (1956). These structures are merely superlattices of a hypothetical CeMg_{5} compound with the CaZn_{5} structure in which two magnesium atoms replace one cerium atom at certain sites to give the observed stoichiometry. No such simple scheme is appropriate for the other compounds; it is probably more instructive to consider the size of the coordination polyhedra (CP's) as essentially constant. The cell constants then mirror this fact.

There are twenty magnesium atoms in the polyhedron about $\mathrm{Ce}(1)$ forming a figure which is the same as that found for Th in ThMn_{12} [or Ce in $\mathrm{CeMg}_{12}(\mathrm{I})$]. The site symmetry is only $4 / \mathrm{m}$, as against $4 / \mathrm{mmm}$ for the $1-12$ structure; nevertheless this CP departs but little from the higher site symmetry.

The CP of $\mathrm{Ce}(2)$ consists of eighteen magnesium atoms, two of which are $\mathrm{Mg}(5)$. Perpendicular to the axis formed by $\mathrm{Mg}(5)-\mathrm{Ce}(2)-\mathrm{Mg}(5)$ and passing

Table 1. Final parameters
e.s.d.'s in parentheses.

	Wyckoff notation	$10^{4} x$	$10^{4} z$	$10^{4} z$	$\begin{gathered} B\left(\AA^{2}\right) \\ \text { or } 10^{4} \beta_{11} \end{gathered}$	$10^{4} \beta_{22}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$
$\mathrm{Ce}(1)$	(a)	0	0	0	13 (1)	13 (1)	77 (3)	0
Ce (2)	(h)	4285 (1)	2365 (1)	0	12 (1)	12 (1)	23 (1)	-2(1)
$\mathrm{Mg}(1)$	(h)	4029 (5)	-102 (5)	0	$1 \cdot 6$ (0.2)			
$\mathrm{Mg}(2)$	(h)	2217 (5)	1219 (5)	0	$1 \cdot 1$ (0.1)			
$\mathrm{Mg}(3)$	(b)	$\frac{1}{2}$	$\frac{1}{2}$	0	1.8 (0.3)			
$\mathrm{Mg}(4)$	(h)	2166 (5)	3413 (4)	0	0.9 (0.1)			
$\underline{M g}(5)$	(i)	612 (3)	2271 (3)	1472 (4)	$0 \cdot 9(0 \cdot 1)$			
$\mathrm{Mg}(6)$	(i)	3641 (3)	4233 (3)	1901 (5)	$1 \cdot 1(0 \cdot 1)$			
$\mathrm{Mg}(7)$	(f)	$\frac{1}{4}$	\pm	$\frac{1}{4}$	$1 \cdot 1(0 \cdot 1)$			
$\mathrm{Mg}(8)$	(i)	3674 (3)	766 (3)	2593 (5)	$1 \cdot 6(0 \cdot 1)$			

Table 2. Observed and calculated structure factors

through $\mathrm{Ce}(2)$, there is a mirror plane containing six magnesium atoms in a girdle. Two more planes perpendicular to this same axis, containing five magnesium atoms each and related to one another by the mirror plane, complete the CP. This may be considered to be a distortion of the seventeenfold CP found about magnesium in $\mathrm{Mg}_{2} \mathrm{Zn}_{11}$ (Samson, 1949). Here, however, the central girdle surrounding the magnesium contains only five atoms. These CP's for $\mathrm{Ce}(1)$ and $\mathrm{Ce}(2)$ are shown in Fig. 1. The central cerium atoms are omitted for the sake of perspicuity.

Since all magnesium atoms are involved in the CP's of one or the other cerium atoms, the structure is best described by a packing description of these CP's. Four of the CP's of $\mathrm{Ce}(2)$ form a nest which cradles the $\mathrm{Ce}(1) \mathrm{CP}$. This cluster is shown in Fig. 2(a), with the CP of $\mathrm{Ce}(1)$ shaded for clearness. In Fig. 2(b) four of these clusters are shown surrounding a $\mathrm{Ce}(1)$ polyhedron located at $\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$. The centers of these clusters are at $(0,0,0)$ and thus outline the unit cell (the c axis is perpendicular to the plane of the figure). The shaded area represents the region which accom-

Table 3. Compounds of cerium and magnesium

CeMg	$\stackrel{a}{3.912 \AA}$	c	$\begin{gathered} M \\ 1 \end{gathered}$	$\begin{array}{r} D_{x} \\ 4 \cdot 56 \end{array}$	$\begin{gathered} \text { Space } \\ \text { group } \\ P m 3 m \end{gathered}$	$\begin{aligned} & \text { Structure } \\ & \text { type } \\ & \mathrm{CsCl} \end{aligned}$	$\begin{gathered} a / s \\ \sim \frac{1}{2} V 2 \end{gathered}$	c / s	Reference for lattice constants Iandelli (1959)
CeMg_{2}	8.733		8	3.76	Fd3m	MgCu_{2}	$\sim \sqrt{2 / 3}$		Iandelli (1959)
CeMg_{3}	$7 \cdot 428$		4	3.45	Fm3m	BiF_{3}	1/V2		Iandelli (1959)
$\mathrm{Ce}_{5} \mathrm{Mg}_{42}$	14.78	$10.43 \AA$	2	2.51	I4/m	$\mathrm{Ce}_{5} \mathrm{Mg}_{42}$	12	1	This work
$\mathrm{Ce}_{2} \mathrm{Mg}_{17}$	$10 \cdot 33$	$10 \cdot 25$	2	$2 \cdot 42$	$P 6 / \mathrm{mmc}$	$\mathrm{Th}_{2} \mathrm{Ni}_{17}$	1	1	Johnson \& Smith (1966)
CeMg_{12} (I)	$10 \cdot 33$	5.96	2	2.25	$14 / \mathrm{mmm}$	ThMn ${ }_{12}$	1	$1 / \sqrt{ } 3$	Johnson et al. (1964)
CeMg ${ }_{12}$ (II)	$10 \cdot 33$	$77 \cdot 5$	26	$2 \cdot 25$	(Immm)	CeMg ${ }_{12} \mathrm{II}$	1	13/V3	Johnson et al. (1964)

(a)

(b)

(c)

Fig.2. (a) Cluster formed by four $\mathrm{Ce}(2)$ coordination polyhedra and one $\mathrm{Ce}(1)$ coordination polyhedron. (b) Arrangement of four clusters about a central $\mathrm{Ce}(1)$ coordination polyhedron. Centers of clusters outline unit cell. (c) Unit cell of $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$ in terms of coordination polyhedra of $\mathrm{Ce}(1)$ and $\mathrm{Ce}(2)$.
modates the cluster about $\mathrm{Ce}(1)$ at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. This is shown in Fig.2(c).

The CP's for most of the magnesium atoms have been observed before. Those for $\mathrm{Mg}(4), \mathrm{Mg}(5)$, and $\mathrm{Mg}(7)$ are icosahedra. There is one very large $\mathrm{Mg}(6)-$ $\mathrm{Mg}(6)$ distance of $3.97 \AA$ represented in the $\mathrm{Mg}(6) \mathrm{CP}$. Including this atom, $\mathrm{Mg}(6)$ has thirteen neighbors in an arrangement quite similar to that found about $\mathrm{Ni}(2)$ in the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ structure (Florio et al., 1956). $\mathrm{Mg}(2)$ has fourteen neighbors in the same arrangement
as $\mathrm{Ni}(4)$ in the $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ structure. $\mathrm{Mg}(3)$ has twelve neighbors in the same arrangement as $\mathrm{Zn}(3)$ in the $\mathrm{Mg}_{2} \mathrm{Zn}_{11}$ structure (Samson, 1949).

The surroundings of $\mathrm{Mg}(1)$ and $\mathrm{Mg}(8)$ appear to be novel. These CP's are best described as an envelope of atoms which surround dumbells of two $\mathrm{Mg}(1)$ atoms and two $\mathrm{Mg}(8)$ atoms. These figures are shown in Fig.3. Interatomic distances are given up to $4.5 \AA$ in Table 4. Estimated standard deviations are 0.005 to $0.012 \AA$ including uncertainties in lattice constants.

Table 4. Interatomic distances in $\mathrm{Ce}_{5} \mathrm{Mg}_{42}$

Kind of atom	Ligancy	Distance	Kind of atom	Ligancy	Distance	Kind of atom	Ligancy	Distance
$\mathrm{Ce}(1)$	$4 \mathrm{Mg}(2)$	3.739 A	$\mathrm{Mg}(2)$	$2 \mathrm{Mg}(5)$	$3 \cdot 112 \AA$	$\mathrm{Mg}(6)$	${ }_{1} \mathrm{Mg}(5)$	2.975 Å
	$8 \mathrm{Mg}(5)$	3.800		$2 \mathrm{Mg}(5)$	$3 \cdot 225$		${ }_{1} \mathrm{Mg}(5)$	3.007
	$8 \mathrm{Mg}(6)$	3.970		${ }_{1} \mathrm{Mg}(4)$	$3 \cdot 243$		${ }_{1} \mathrm{Mg}(3)$	3.042
				$2 \mathrm{Mg}(7)$	3.249		$1 \mathrm{Mg}(7)$	$3 \cdot 130$
				$1 \mathrm{Mg}(1)$	3.315		${ }_{1} \mathrm{Mg}(4)$	$3 \cdot 187$
				$1 \mathrm{Ce}(2)$	$3 \cdot 495$		$2 \mathrm{Mg}(6)$	$3 \cdot 262$
$\mathrm{Ce}(2)$	$1 \mathrm{Mg}(4)$	3.415		$2 \mathrm{Mg}(8)$	$3 \cdot 521$		${ }_{1} \mathrm{Mg}(8)$	$3 \cdot 462$
	$1 \mathrm{Mg}(4)$	3.494		$2 \mathrm{Mg}(6)$	3.535		${ }_{1} \mathrm{Ce}(2)$	$3 \cdot 505$
	$1 \mathrm{Mg}(2)$	3.495		$1 \mathrm{Ce}(1)$	3.739		${ }_{1} \mathrm{Ce}(2)$	3.530
	${ }_{2} \mathbf{M g}(6)$	$3 \cdot 505$					${ }_{1} \mathrm{Mg}(2)$	3.535
	${ }_{2} \mathrm{Mg}(6)$	$3 \cdot 530$	$\mathrm{Mg}(3)$	$8 \mathrm{Mg}(6)$	3.042		$1 \mathrm{Mg}(6)$	3.966
	$1 \mathrm{Mg}(1)$ $2 \mathrm{Mg}(8)$	3.666 3.667		$4 \mathrm{Ce}(2)$	4.035		$1 \mathrm{Ce}(1)$	3.970
	${ }_{2} \mathrm{Mg}(8)$	3.704	$\mathrm{Mg}(4)$	2 Mg (7)	$2 \cdot 977$	$\mathrm{Mg}(7)$	$2 \mathrm{Mg}(4)$	2.977
	2 Mg (7)	3.715		2 Mg (8)	$3 \cdot 053$		$2 \mathrm{Mg}(5)$	3.009
	$2 \mathrm{Mg}(5)$	3.722		$1 \mathrm{Mg}(1)$	$3 \cdot 183$		2 Mg (8)	3.097
	$1 \mathrm{Mg}(3)$	4.035		2 Mg (6)	$3 \cdot 187$		$2 \mathrm{Mg}(6)$	$3 \cdot 130$
	$1 \mathrm{Mg}(1)$	$4 \cdot 170$		$2 \mathrm{Mg}(5)$	$3 \cdot 237$		$2 \mathrm{Mg}(2)$	3.249
				$1 \mathrm{Mg}(2)$	$3 \cdot 243$		$2 \mathrm{Ce}(2)$	3.715
				$1 \mathrm{Ce}(2)$	3.415			
				$1 \mathrm{Ce}(2)$	3.494	$\mathrm{Mg}(8)$	$1 \mathrm{Mg}(1)$	3.039
							$1 \mathrm{Mg}(4)$	3.053
			$\mathrm{Mg}(5)$	$1 \mathrm{Mg}(6)$	2.975		${ }_{1} \mathrm{Mg}(7)$	3.097
$\mathrm{Mg}(1)$	${ }_{1} \mathrm{Mg}(1)$	2.885		${ }_{1} \mathrm{Mg}(6)$	3.007		$1 \mathrm{Mg}(1)$	3.109
	${ }_{2} \mathrm{Mg}(8)$	3.039		$1 \mathrm{Mg}(7)$	3.009		${ }_{1} \mathrm{Mg}(5)$	$3 \cdot 132$
	${ }_{2} \mathrm{Mg}(8)$	$3 \cdot 109$		$1 \mathrm{Mg}(5)$	3.070		$2 \mathrm{Mg}(8)$	$3 \cdot 206$
	$2 \mathrm{Mg}(5)$	$3 \cdot 111$		$1 \mathrm{Mg}(1)$	$3 \cdot 111$		$1 \mathrm{Mg}(5)$	3.238
	$1 \mathrm{Mg}(4)$	$3 \cdot 183$		$1 \mathrm{Mg}(2)$	$3 \cdot 112$		$1 \mathrm{Mg}(6)$	$3 \cdot 462$
	$1 \mathrm{Mg}(2)$	$3 \cdot 315$		$1 \mathrm{Mg}(8)$	$3 \cdot 132$		$1 \mathrm{Mg}(2)$	$3 \cdot 521$
	$1 \mathrm{Ce}(2)$	3.666		$1 \mathrm{Mg}(2)$	3.225		${ }_{1} \mathrm{Ce}(2)$	3.667
	$2 \mathrm{Mg}(8)$	$4 \cdot 165$		$1 \mathrm{Mg}(4)$	$3 \cdot 237$		${ }_{1} \mathrm{Ce}(2)$	3.704
	${ }_{1} \mathrm{Ce}(2)$	$4 \cdot 170$		$1 \mathrm{Mg}(8)$	3.233		$1 \mathrm{Mg}(1)$	$4 \cdot 165$
	$2 \mathrm{Mg}(8)$	$4 \cdot 449$		$1 \mathrm{C}=(2)$	3.722		$2 \mathrm{Mg}(1)$	$4 \cdot 449$
				$1 \mathrm{Ce}(1)$	3.993)			

(a)

(b)

Fig. 3. (a) Coordination polyhedron about two $\mathrm{Mg}(1)$ atoms (shaded). (b) Coordination polyhedron about two $\mathrm{Mg}(8)$ atoms (shaded).

The inappropriateness of the scheme of Florio et al. (1956) to account for this structure suggests the absence of a CeMg_{5} compound of the CaZn_{5}-type structure. It is likely, however, that an additional compound or compounds may be discovered in this system, especially in the region $\mathrm{CeMg}_{3}-\mathrm{CeMg}_{8}$. Fig. 4 shows the densities of the observed compounds on the same plot with the end members. This plot should be useful in predicting cell volumes, and in the case of cubic compounds, cell constants. For example, if a compound $\mathrm{Ce}_{5} \mathrm{Mg}_{24}$ with a $\mathrm{Ti}_{5} \mathrm{Re}_{24}$-like structure (Trzebiatowski \& Niemiec, 1955) exists, its cell constant would be about $11 \cdot 3 \AA$. Interestingly enough, there exist compounds, $\mathrm{Er}_{5} \mathrm{Mg}_{24}$ and $\mathrm{Dy}_{5} \mathrm{Mg}_{24}$, with cell constants of 11.23 and $11.24 \AA$, respectively (Kripyakevich \& Evdokimenko, 1962), so such speculation is not completely unwarranted.

Note added in proof. - The $\mathrm{Th}_{2} \mathrm{Ni}_{17}$-like compound referred to as $\mathrm{Ce}_{2} \mathrm{Mg}_{17}$ in the above text has recently been shown by Johnson \& Smith (1966) to have the composition $\mathrm{CeMg}_{10 \cdot 3}$.

Fig.4. Calculated densities of cerium-magnesium compounds.

We wish to thank M. Jepson for measuring some of the data, V.Silveira for powder photography, D. Wood for samples, and C.Johnson and A.Zalkin for several of the computer codes. This work was done under the auspices of the U.S. Atomic Energy Commission.

References

Beletski, M. S. \& Galperin, E. L. (1961). Fiz. Metal. i Metalloved. 11, 698.
Evdokimenko, V. \& Kripyakevich, P. (1963). Kristallografiya, 8, 186.
Florio, J. V., Baenziger, N. C. \& Rundle, R. E. (1956). Acta Cryst. 9, 367.
Heaton, L., Gvildys, J. \& Mueller, M. (1964). Argonne National Laboratory Report B-106.
Iandell, A. (1959). The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1, Paper 3F.
International Tables for X-Ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

International Tables for X-Ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, Q. C. \& Smith, G. S. (1966). Lawrence Radiation Laboratory Livermore, Report UCRL-70228.
Johnson, Q. C., Smith, G. S., Wood, D. H. \& Cramer, E. M. (1964). Nature, Lond. 201, 600.

Kripyakevich, P. \& Evdokimenko, V. (1962). Dopovidi Akad. Nauk Ukr. RSR, p. 1610.
Miller, A. (1960). Unpublished data quoted by C.S. Roberts, Magnesium and Its Alloys, pp. 50-51. New York: John Wiley.
Samson, S. (1949). Acta Chem. Scand. 3, 835.
Savitskit, E., Terekhova, V., Burov, I., Markova, I. \& Naumkin, O. (1962). Rare Earth Alloys. Academy of Sciences USSR, Moscow; Eng. Trans. AEC-tr-6151.
Smith, G.S. \& Alexander, L. E. (1963). Acta Cryst. 16, 462.
Trzebiatowski, W. \& Niemiec, J. (1955). Roczniki Chem. 29, 277.
Wood, D. H. \& Cramer, E. M. (1965). J. Less-Com. Met. 9, 321.

